Trust-aware Decentralized Recommender Systems: PhD research proposal

نویسنده

  • Paolo Massa
چکیده

This PhD thesis addresses the following problem: exploiting of trust information in order to enhance the accuracy and the user acceptance of current Recommender Systems (RS). RSs suggest to users items they will probably like. Up to now, current RSs mainly generate recommendations based on users’ opinions on items. Nowadays, with the growth of online communities, emarketplaces, weblogs and peer-to-peer networks, a new kind of information is available: rating expressed by an user on another user (trust). We analyze current RS weaknesses and show how use of trust can overcome them. We proposed a solution about exploiting of trust into RSs and underline what experiments we will run in order to test our solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

Paradigms for Decentralized Social Filtering Exploiting Trust Network Structure

Recommender systems, notably collaborative and hybrid information filtering approaches, vitally depend on neighborhood formation, i.e., selecting small subsets of most relevant peers from which to receive personal product recommendations. However, common similarity-based neighborhood forming techniques imply various drawbacks, rendering the conception of decentralized recommender systems virtua...

متن کامل

Trust Aware Recommender Systems: A Survey on Implicit Trust Generation Techniques

Development of Web 2.0 enabled users to share information online, which results into an exponential growth of world wide web data. This leads to the so-called information overload problem. Recommender Systems (RS) are intelligent systems, helping on-line users to overcome information overload by providing customized recommendations on various items. In real world, people are willing to take adv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003